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J. Phys. A :  Gen. Phys., Vol. 5. January 1972. Printed in Great Britain 

Spatial correlations and photon counting? 

H C KELLY 
Lyman Laboratory of Physics. Harvard Lniversity. Cambridge. Massachusetts 02138. LIS,.\ 

MS received 1 1  June 1971. in revised form 3 August 1971 

Abstract. The effect of incomplete spatial coherence on photon correlation measurementh 
is calculated in terms of the solutions to integral equations. The N time generating function 
is calculated with a new approach to the 'short counting time' approximation and the 
two-time generating function is calculated exactly for a Lorentz spectrum. The joint 
counting rates for a full digital correlator are obtained and approximate solutions to the 
'clipped' correlator counting rate problem are indicated. 

1. Summary of photon correlation spectroscopy 

In recent years it has become possible to measure the fine structure of the correlation 
functions of light intensities through the use of photon correlation devices. The field 
correlations are conventionally written as (Glauber 1963) 

G"'(r. r ' .  t ,  t ' )  = ( € ' - Y r .  f)€'AYr'3 T'!;, I1 1 

where € ' - I  and E'- '  are, respectively, the positive and negative parts of the electric 
fields. These correlation functions contain information about both the power spectrum 
and the physical dimensions of the source. While most recent efforts in intensity cor- 
relation spectroscopy have been directed towards the measurement of the spectral 
lineshapes it should be remembered that the technique was originally developed by 
Hanbury Brown and Twiss with the intention of measuring the dimensions of stellar 
sources (Hanbury Brown and Twiss 1956). 

Photon correlation devices measure the correlations between photons arriving 
during distinct time intervals. We will see later how such a measurement of 'intensity' 
correlations can yield information about field correlations. A two-time correlator 
compares the number of counts arriving during a time interval AT centred on t with 
the number of counts arriving during the time interval AT centred on t,. I f  we define 
pAT = t ,  - t 2  we would measure 

C ( p )  = ("V(P)i ( 2 )  

where we have defined N ( p )  as the number of photons detected during the interval 
pAT< t < ( p t  1)AT. Alternatively, we could measure the so called 'clipped' cor- 
relation 
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where we have defined 

if N ( p )  > k 

if N ( p )  < k .  
(4) 

I t  should be noticed that the k used in this paper is one greater than the k used by 
Jakeman (1970). 

2. Calculating the generating function for the photon counting problem in terms of the 
eigenvalues of an integral equation 

In calculating the joint counting rates indicated in equations (2) and (3) it is most con- 
venient to use the ‘generating function’ which is defined in terms of the joint probability 
function P(n , ,  . . . nN),  where we have defined P(n, ,  . . . n N )  as the joint probability for 
detecting Y L ,  photons during the interval AT centred on t ,  and detecting n, counts 
during an interval AT centred on f,, and so on. The generating function is defined as 
follows : 

c X 

Q(sl,s,,. . . S , ~ )  = . . . 1 (1 -sl)nl . . . (1 - s N ) n N P ( n l , .  . . n N ) .  (5) 

Using methods developed by Jakeman (1970) and others, we find that we can write 
n l = O  n N = O  

Q(sl, . . .  s N )  = (1+Aj)-’ 
j =  1 

where the i.j are the eigenvalues of the following integral equation : 
V t , + A T / 2  

lwkQk(r3 f) = So s n  d t f j B  d3r’G(’)(r, I”, t ,  t’)Qk(r’, t’). (7) 
n =  1 

Here So is the sensitivity of the detector and B is the area of the detector. 
We can write the field correlation function G(’) in a form convenient for the solution 

of equation (7) if we make a few relatively nonrestrictive assumptions: (i) we will assume 
that the spectrum of the scattered light incident on the detector is characterized by a 
spectrum S(w) which is symmetric in frequency about a central frequency 0 , ;  (ii) we 
will suppose that the spectrum has a h e w i a t h  Aw such that s(w) is negligible outside 
of the range U, - Aw < w < w, + Aw ; (iii) we assume that (the maximum linear dimen- 
sion of the source)/R, << 1, where R ,  is the distance between the detector and the source ; 
(iv) we assume that the source is stationary in space and time. When these assumptions 
are valid, we can write quite generally 

G(”(r, r‘, t ,  f’) = (IE12)gCi,-jY)h(r-r‘) exp{ - iwo(2-2’)} (8) 

where we have used the following definitions : 

a; exp( - iwt)S(w) dw 
(1EI2> 

( [ E l 2 )  = G“’(O,O, 0,O) 
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G ( ’ ) ( r ,  r ‘ ,  0,O) 
G‘”(O,O, 0,O) 

h(r - r ‘ )  = 

The function k ( r  - r ’ )  carries information about the shape of the source. If we hold 
r’ fixed, the function k ( r - r ’ )  simply describes the diffraction (as measured from r ’ )  
which is produced by the source. This is the theorem of van Cittert and Zirnike (see 
Born and Wolf 1964). If the source has an area A as seen by the detector, we can write 
h(r - r’)  in the following form (Born and Wolf 1964) : 

h ( r - r ’ )  = - exp{-ip(r--r’) .R] d2R 
A A  ‘ J  

where we have defined p = o,/cR, and have again made use of assumption ( i i i ) .  

In particular, if the source is a rectangle with sides a and a’ 

sin (pta(s  - x’)) sin jpa‘(y - y’); 
h(r-  r ’ )  = ~~ 1 1 1 )  

pa(x - s’) puyy - y’) 

If the source is a disc with a radius a, we can again use (10) to find 

If (the maximum dimension of the detecting system)/c is small compared with the 
times over which g( t )  changes significantly, we can approximate g ( j  - y‘) by g(r - t’) .  
In this case the field correlation function factors into a part depending only on time and a 
part depending only on position. The time part contains information about the spectrum 
of the source while the spatial part contains information about the shape of the source 
Since photon correlation experiments are most commonly concerned with either the 
spectrum or the source shape and not both, the spatial and temporal effects must be 
separated (Hanbury Brown and Twiss 1957). We will find how to do this in  the next 
section. We will begin by finding the approximate solutions to the integral equation 
which hold only for short counting times and we will indicate the exact solution to the 
problem in the case of a Lorentz spectrum in the concluding section. 

3. An approximate solution to the integral equation for the case of short counting times 

I f  we assume that the counting time AT is much smaller than the time over which g( t )  
varies significantly, we can simplify equation (7) by multiplying both sides by 
exp(-iw,R) and integrating over the interval (t,-ATT/2) < t < (t ,+AT/2).  We then 
find 

Yk(tn, r‘)h(r-r‘)g(tj-t,)d2r’ 
n =  1 

where we have defined 
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and ii, the expected number of counts arriving during the interval AT is given by 

ii = S,BT((EIZ).  (15) 

Since the kernel of (7) was factored by the approximation in (8) into space and time parts, 
we expect that the eigenfunctions can be similarly factored. We will assume that we 
have found the M orthonormal functions fk(r) which satisfy the equations 

since the matrix Dk is of Nth order, for each eigenvalue bk of equation (16) there will be 
N eigenvalues & associated with equation (20). There will thus be a total of M x N 
solutions to the eigenvalue problem in equation (7). In most cases of interest the kernel 
of equation (16) will be nondegenerate and M will be infinite. 

We can construct a matrix equation which gives all M N  eigenvalues of (7) simul- 
taneously if we use the MN x MN matrix which has the N x N matrices Dk along its 
main diagonal 

D =  [r D 2  D, 

The diagonalized form of D contains all of the eigenvalues ik. We can thus use D and 
equation (6) to find the generating function 

Q(s1 . . .  SN) = n ( l + A k ) - '  = {det(l+D)}-' = n(de t ( l+Dk) ) - l .  (23) 
k k 

We can write the double time generating function explicitly by using equation (21) 

We have used the fact that g*( t -  t') = g(t'- t). 
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Returning to equation (16) we see that if the detector and the source are sufficiently 
small and sufficiently far apart so that h(r - r ’ )  = 1 over the entire area of the detector, 
there is only one nonzero eigenvalue to equation (16), that is, b ,  = 1. If we use this 
single eigenvalue in equation (23) and make use of equation (21) we find that we have 
recovered the short time generating function originally calculated by Bedard (1967) 

Q(sl . . . sn) = {det(l +D,)}- ’  

Dl(m, n)  = (1 - G’,,)s,ng(t, - t,) + dmn( 1 + ns,). 

4. Calculation of the joint counting rates in the short time approximation 

We can now proceed to find the joint counting rates which are measured in photon 
correlation experiments. Making use of equations (5) and (24) we find 

The sums can be evaluated by using a well known theorem from the theory of integral 
equations which tells us that when h(r - r‘) is nondegenerate we can write 

If we now set r = r’ and integrate both sides of (26) over the area B we find 

1 bi = 1. 
i =  1 

If we multiply both sides of (26) by h*(r - r ’ )  and integrate both r and r‘ over the area B 
we find 

1 b? = (;)’I d2rd2r’lh(r-r’)12 p. 
i =  1 B B  

Using (26) and (27) in (25) we find that we have recovered the conventional form of the 
two-time correlation of count rates 

(“w)) = n2(1 +Plg(pAT)I’). (29) 

Calculations of p for various forms of sources and detectors have been performed by 
several authors (Hanbury Brown and Twiss 1957, Scar1 1968, Jakeman et a1 1970, 
Haig and Sillito 1968). 

Calculations for the clipped correlator require us to obtain the eigenvalues of (16) 
explicitly. Slepian (1964) has studied the solutions to homogeneous integral equations 
of the type (16) when the kernel can be written in the form of equation (10) and when 
the areas of the source A and the detector B meet the following requirements : (i) A and 
B are scaled versions of each other, that is if r E A if and only if ( r / d )  E B when d is some 
positive constant ; (ii) both A and B are symmetric, that is if r E A implies - r E A .  We 
will examine two cases which meet these requirements and which are of particular 
interest to light scattering problems. 
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When the source is a rectangle of dimensions a by a’ and the detector is a rectangle 
of dimensions b by b‘. the eigenfunctions of (16) are prolate spheroidal wavefunctions of 
zero order. The eigenvalues can be written in Flammer’s notation as follows (Flammer 
1957): 

bfn, = (Rb‘,‘(c0,1)Rd%cb, (30) 

where we have defined co = abp and cb = a’b’p. If both the source and the detector 
are squares, that is, if a = a’ and b = b‘, the first three eigenvalues can be approximated 
fgr small values of co as follows (Slepian and Sonnenblick 1965): 

b = 1 - -3 +(terms of order c:) (31 1 
2c2 
9 

C 2  

3 -  9 
b ,  = b - ?+(terms of order c;,. 

Notice the degeneracy of the eigenvalues due to the symmetry of the rectangle. Slepian 
and Sonnenblick (1965) have tabulated values of R&)(co, 1) for various values of co .  

If the source is a circle with radius a and the detector is a circle with a radius a’, the 
eigenfunctions are generalized prolate spheroidal wavefunctions and we find, following 
Slepian (1964), that 

472 b, = - 
CO 

where co = aa’p and 7 solves the following integral equation : 

jl4(r) = jol J,~(corr‘)(cor~’)1’z4(r’)  dr’. 

(33) 

(34) 

Slepian’s paper tabulates y 2  for various values of the argument co .  We have converted 
some of Slepian’s figures to notation useful to this paper and the result is shown in 
table 1. Two things should be noticed. First, when co is small, that is when the detector 
spans less than a spatial ‘coherence area’ of the incident light, only a single eigenvalue 
is significant and it is, as we anticipated, close to unity. When co becomes large, we 
find that there are a number of approximately equal eigenvalues. 

Table 1. The eigenvalues for equation (16) in the case of circular and square sources and 
detectors. 

Discs with co = wororb/cR, Squares with eo = oOab;cRO 

CO 1.0 2.0 3.0 4.0 5.0 1.0 2.0 3.0 4.0 5.0 

0.8844 0.6296 0.3942 0,2437 0.1592 0.8090 0.4783 0,2610 0.1529 0.0985 
0.0556 0,1612 0,2148 0,1962 0.1499 0.0887 0.1932 0,1899 0,1401 0,0967 
0.0556 0.1612 0.2148 0,1962 0,1499 0,0887 0.1932 0,1899 0.1401 0.0967 
0,0016 0,0191 0.0606 0.1007 0,1125 0.0097 0.0780 0.1382 0.1283 0.0948 
0.0016 0,0191 0.0606 0,1007 0.1125 0,0017 0,0195 0,0549 0,0797 0,0789 
0,0004 0,0067 0.0296 0.0669 0.0926 0,0017 0.0195 0.0549 0,0797 0,0789 
O.oo00 0,0002 0.0009 0.0096 0.0269 OQOO2 0.0079 0.0399 0.0730 0.0744 
0.0000 0.0002 0.0009 0.0096 0.0269 0.0002 0.0079 0.0399 0,0730 0.0774 
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We can now use these calculated eigenvalues to determine the joint counting rates 
for the clipped correlator. Using ( 5 )  and (24) we can write 

x1 = 

x 2  = 

(35j 

( 3 6 )  

( 3 7 )  

Higher order cx could be calculated similarly. We have used the first ten eigenvalues of 
the double disc problem to plot figure 1. 

Figure 1. The values of a,(c) as a function of(, for the case ofcircular sources and detectors 
with ii = 1. 

From equations (29) and (35) we see that the most important effect of considering 
the properties of spatial coherence in a photon counting measurement designed to 
measure the source spectrum comes in the term which gives the relative contribution 
of the term g( t )  in the joint counting rate. By examining the calculations of p cited in 
the literature and by observing the curves shown in figure 1 we see that the contribution 
of g( t )  relative to the constant background diminishes as co increases (it should be 
noticed that the number ~ $ 4  is conventionally called the number of ‘coherence areas’ 
spanned by the detector). 

5 .  The exact solution in the case of a Lorentz spectrum 

If the light incident on the detector has a lorentzian lineshape, the time part of the 
integral equation (7) can be solved exactly (Jakeman 1970). The trick is to reduce the 
problem to the solution of a simple differential equation whose solutions are exponentials. 
When we are calculating the two-time generating function, the boundary conditions 
on the differential equations permit solutions only when 
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where we define 

z T T  

y,(s, z) = z2 + 2zsb,(lEI2)z. 

r is the halfwidth of the Lorentz spectrum. 

we find that we can write 
If we expand F(z) as a product of its zeros (which are the eigenvalues of equation (7)), 

Q(si, ~ 2 )  = (F(1))- 1. (40) 
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